Что такое удельное сопротивление вещества? Чтобы ответить простыми словами на этот вопрос, нужно вспомнить курс физики и представить физическое воплощение этого определения. Через вещество пропускается электрический ток, а оно, в свою очередь, препятствует с какой-то силой прохождению тока.
Понятие удельного сопротивления вещества
Именно эта величина, которая показывает насколько сильно препятствует вещество току и есть удельное сопротивление (латинская буква «ро»). В международной системе единиц сопротивление выражается в Омах, умноженных на метр. Формула для вычисления звучит так: «Сопротивление умножается на площадь поперечного сечения и делится на длину проводника».
Возникает вопрос: «Почему при нахождении удельного сопротивления используется еще одно сопротивление?». Ответ прост, есть две разных величины — удельное сопротивление и сопротивление. Второе показывает насколько вещество способно препятствовать прохождению через него тока, а первое показывает практически то же самое, только речь идет уже не о веществе в общем смысле, а о проводнике с конкретной длиной и площадью сечения, которые выполнены из этого вещества.
Обратная величина, которая характеризует способность вещества пропускать электричество именуется удельной электрической проводимостью и формула по которой вычисляется удельная сопротивляемость напрямую связана с удельной проводимостью.
Применение меди
Понятие удельного сопротивления широко применяется в вычисление проводимости электрического тока различными металлами. На основе этих вычислений принимаются решения о целесообразности применения того или иного металла для изготовления электрических проводников, которые используются в строительстве, приборостроении и других областях.
Таблица сопротивления металлов
Существуют определенные таблицы? в которых сведены воедино имеющиеся сведения о пропускании и сопротивлении металлов, как правило, эти таблицы рассчитаны для определенных условий.
В частности, широко известна таблица сопротивления металлических монокристаллов при температуре двадцать градусов по Цельсию, а также таблица сопротивления металлов и сплавов.
Этими таблицами пользуются для вычисления различных данных в так называемых идеальных условиях, чтобы вычислить значения для конкретных целей нужно пользоваться формулами.
Медь. Ее характеристики и свойства
Описание вещества и свойства
Медь — это металл, который очень давно был открыт человечеством и также давно применяется для различных технических целей. Медь очень ковкий и пластичный металл с высокой электрической проводимостью, это делает ее очень популярной для изготовления различных проводов и проводников.
Физические свойства меди:
- температура плавления — 1084 градусов по Цельсию;
- температура кипения — 2560 градусов по Цельсию;
- плотность при 20 градусах — 8890 килограмм деленный на кубический метр;
- удельная теплоемкость при постоянном давлении и температуре 20 градусов — 385 кДж/Дж*кг
- удельное электрическое сопротивление — 0,01724;
Марки меди
Данный металл можно разделить на несколько групп или марок, каждая из которых имеет свои свойства и свое применение в промышленности:
- Марки М00, М0, М1 — отлично подходят для производства кабелей и проводников, при ее переплавке исключается перенасыщение кислородом.
- Марки М2 и М3 — дешевые варианты, которые предназначены для мелкого проката и удовлетворяют большинству технических и промышленных задач небольшого масштаба.
- Марки М1, М1ф, М1р, М2р, М3р — это дорогие марки меди, которые изготавливаются для конкретного потребителя со специфическими требованиями и запросами.
Между собой марки отличаются по нескольким параметрам:
- вид поставки;
- насыщение кислородом;
- разница в показателе сопротивления;
- наличие примесей;
- степень теплопроводности;
Влияние примесей на свойства меди
Примеси могут влиять на механические, технические и эксплуатационные свойства продукции.
- Механические свойства. Такие вещества, как железо, висмут, свинец или кислород, оказывают влияние на пластичность меди. Некоторые малорастворимые примеси влияют на сохранение структуры вещества при увеличении температуры. Например, свинец или висмут делает медь очень хрупкой, а вот добавление хотя бы незначительного количества серебра (пять сотых процента) значительно повышает плавкость меди, то есть даже при высоких температурах ее кристаллическая решетка остается неизменной, при этом не происходит потереть тепло- или электропроводимости.
- Технические свойства. К ним относят обработку давлением при разных температурах и сплавляемость (сварка) вещества. При наличии малорастворимых примесей в меди появляются зоны особой хрупкости при большой температуре, это делает обработку давлением очень трудной, однако, в марках М1 и М2 нужная пластичность достигается за счет низкого содержания примесей. Если говорить о давлении при низких температурах, то данная технология применяется при производстве катанки (проволоки) и для разных марок способность к вытяжке также различна.
- Эксплуатационные свойства. При стандартных условиях эксплуатации разные марки ведут себя вполне одинаково, но из-за содержания водорода и кислорода в разных марках условия применяются при повышении температуры. В частности, кислород начинает отрицательно влиять на медь при повышении температуры окружающей среды, а водород при нагреве самого вещества до двухсот градусов.
В заключение следует подчеркнуть, что медь — это уникальный металл с уникальными свойствами. Она применяется в автомобилестроении, изготовлении элементов для электроиндустрии, электроприборов, предметов потребления, часов, компьютеров и многого другого. Со своим низким удельным сопротивлением данный металл является отличным материалом для изготовления проводников и прочих электрических приборов. Этим свойством медь обгоняет только серебро, но из-за более высокой стоимости оно не нашло такого же применения в электроиндустрии.