Тиристор – это полупроводниковый ключ, конструкция которого представляет собой четыре слоя. Они обладают способностью переходить из одного состояния в другое – из закрытого в открытое и наоборот.
Информация, представленная в данной статье, поможет дать исчерпывающий ответ на вопрос об этом аппарате.
Принцип функционирования тиристора
В специализированной литературе этот прибор также носит название однооперационного тиристора. Это название обусловлено тем, что устройство является не полностью управляемым. Другими словами, при получении сигнала от управляющего объекта он может только перейти в режим включенного состояния. Для того чтобы выключить прибор, человеку придется выполнить дополнительные действия, которые и приведут к падению уровня напряжения до нулевой отметки.
Работа этого прибора основывается на использовании силового электрического поля. Для его переключения из одного состояния в другое применяется технология управления, передающая определенные сигналы. При этом ток по тиристору может двигаться только в одном направлении. В выключенном состоянии этот прибор обладает способностью выдерживать как прямой, так и обратное напряжение.
Способы включения и выключения тиристора
Переход в рабочее состояние стандартного этого типа аппарата осуществляет путем поучения импульса токового напряжения в определенной полярности. На скорость включения и на то, как он впоследствии будет работать, влияют следующие факторы:
- Характер нагрузки. Нагрузка в этом случае может быть индуктивной, активной и др.
- Скорость увеличения импульса управления.
- Амплитуда увеличения импульса управления.
- Температура среды тиристора.
- Величина тока нагрузки.
- Уровень прилагаемого напряжения.
Выключение тиристора может быть осуществлено некоторыми способами:
- Естественное выключение. В технической литературе также встречается такое понятие, как естественная коммутация – оно аналогично естественному выключению.
- Принудительное выключение (принудительная коммутация).
Естественное выключение этого аппарата осуществляется в процессе его функционирования в цепях с переменным током, когда происходит понижение уровня тока до нулевой отметки.
Принудительное выключение включает в себя большое количество самых разнообразных способов. Самым распространенным из них является следующий метод.
Конденсатор, обозначаемый латинской буквой C, соединяется с ключом. Он должен обозначаться маркеровкой S. При этом конденсатор перед замыканием должен быть заряжен.
Основные типы тиристоров
В настоящее время существует немалое количество тиристоров, которые различаются между собой своими техническими характеристиками – скоростью функционирования, способами и процессами управления, направлениями тока при нахождении в проводящем состоянии и др.
Наиболее распространенные типы
- Тиристор-диод. Такой прибор аналогичен устройству, которое имеет встречно-параллельный диод во включенном режиме.
- Диодный тиристор. Другое название – динистор. Отличительной характеристикой этого устройства является то, что переход в проводящий режим осуществляется в момент, когда уровень тока превышен.
- Запираемый тиристор.
- Симметричный. Он также носит название симистора. Конструкция этого прибора аналогична двум устройствам со встречно-параллельным диодами при нахождении в режиме работы.
- Быстродействующий или инверторный. Этот тип устройства обладает способностью переходить в нерабочее состояние за рекордно короткое время – от 5 до 50 микросекунд.
- Оптотиристор. Его работа осуществляется при помощи светового потока.
- Тиристор под полевым управлением по ведущему электроду.
Обеспечение защиты
Тиристоры входят в перечень приборов, которые критично влияют на изменение скорости увеличения прямого тока. Как и для диодов, так и для тиристоров характерен процесс протекания обратного тока восстановления. Резкое изменение его скорости и падение до нулевой отметки приводит к повышенному риску возникновения перенапряжения.
Кроме того, перенапряжение в конструкции этого прибора может возникать вследствие полного исчезновении напряжения в разнообразных составных частях системы, например, в малых индуктивностях монтажа.
По вышеуказанным причинам в подавляющем большинстве случаев для обеспечения надежной защиты этих приборов применяют разнообразные схемы ЦФТП. Данные схемы при нахождении в динамическом режиме помогают защищать устройство от возникновения недопустимых значений напряжения.
Надежным средством защиты также является применение варистора. Это устройство подключается к местам вывода индуктивной нагрузки.
Применение тиристоров
В самом общем виде применение такого прибора, как тиристор, можно разделить на следующие группы:
- Силовые ключи. Они представляют собой переключатели переменного напряжения. Одним из главных факторов, который привел к широкой востребованности данных приборов, стал низкий уровень потребляемой мощности в процессе функционирования. Мощность подвержена рассеиванию в частях переключения. В выключенном состоянии потери мощности практически равны нулю – это происходит благодаря тому, что уровень напряжения в данной ситуации равен нулю. При нахождении в открытом состоянии тиристор теряет некоторое количество мощности. Однако данные потери совершенно незначительны.
- Пороговые устройства. Применение в данных устройствах тиристора обеспечивается благодаря наличию свойства пропускать ток только при определенном значении напряжения. Наиболее часто данные типы приборов применяются в фазовых регуляторах, а также релаксационных генераторах.
- Подключение постоянного тока. В данной группе используются запирающие типы аппаратов. Они необходимы для прерывания напряжения в цепи или же для включения и выключения прибора.
- Экспериментальные устройства. Их применение в данной области обусловлено свойством обладать отрицательным сопротивлением при нахождении в переходном режиме.
Ограничения тиристора
При работе с любым типом этого прибора следует соблюдать определенные правила техники безопасности, а также помнить о некоторых необходимых ограничениях.
Например, в случае с индуктивной нагрузкой при функционировании такой разновидности прибора, как симистор. В данной ситуации ограничения касаются скорости изменения уровня напряжения между двумя основными элементами – его анодами и рабочим током. Для ограничения влияния тока и перегрузки применяется RC-цепочка.