Нагретая ТЭЦ вода в силу высоких напорных характеристик и температур не может быть непосредственно использована в сетях обогрева различного типа зданий, индивидуальных, коммунальных домов. Поэтому для приведения физических параметров теплового носителя к приемлемым и безопасным характеристикам перед контурами отопления размещают элеваторный узел системы отопления.
Элеваторные распределители применяются в отопительных системах десятки лет и в настоящее время являются морально устаревшими. Однако их до сих выпускают промышленные предприятия и используют в индивидуальных тепловых пунктах (ИТП) в силу простоты конструкции, невысокой стоимости, эффективной работе при стабильных параметрах теплового носителя.
Рис. 1 Элеваторный узел системы отопления — примеры размещения в теплосетях
Назначение и принцип работы элеватора в системе отопления
Тепловые станции или крупные котельные способны обеспечивать горячим теплоносителем территории большой площади. В связи с этим протяженность теплосетей может достигать десятков километров, что вызывает значительные потери тепла в магистрали. Поэтому начальная температура теплоносителя от станций и котельных выбирается с учетом этих теплопотерь. Нормативными документами установлены несколько режимов температурных параметров подачи и обратки теплосетей, основные из них – 150 / 70, 130 / 70, 95 / 70.
Так как в целях безопасности и снижения потерь температура в радиаторных теплообменниках зданий не должна быть больше 95 °С, многим потребителям тепловой энергии зданий, находящихся на небольшом расстоянии от теплостанций, приходится решать проблему частичного охлаждения нагретой до температур около 150 или 130 °С воды.
Этого можно достичь единственным методом, смешивая входящий и охлажденный обратный поток в тройниковом узле. Однако если производить смешение в обычном тройнике, в нем будет отсутствовать ток воды и соответственно движение теплового носителя по трубопроводу остановится. Поэтому в смесительном узле на пути потока подачи делают узкое сопло. Это приводит к увеличению скорости водного потока и соответственно снижению его давления в области сопла, которое напрямую связано с диаметром трубопровода. В результате турбулентный поток увлекает за собой водные массы из обратки, обеспечивая таким способом движение теплового носителя по контуру.
Тройник с внутренним зауженным соплом и является тем типом арматуры, которая получила название элеваторный узел.
Следует отметить, что элеватор одновременно выполняет функции смесителя и циркуляционного насоса, проталкивающего тепловой носитель по отопительному контуру. К перечисленным работам можно добавить его функционирование в качестве редуктора, понижающего давление, и термостата, уменьшающего температуру до требуемых параметров.
Рис. 2 Формулы расчета элеватора
Конструкция и основные фрагменты элеватора
Типичный элеватор делают из литьевого чугуна или стали, для подсоединения к трубопроводу его оснащают фланцами с трех сторон. Для защиты от коррозии деталь покрывают порошковой эпоксидной краской синего или черного цветов.
Рассматривая, что такое элеваторный узел в системе отопления, его условно разбивают на следующие составляющие:
Читайте также: Монтаж стояков отопления: что нужно знать, если делаешь это сам
Рис. 3 Конструктивное устройство элеватора
Особенности элеваторных узлов
Элеваторные узлы лет 20 — 30 назад являлись основным видом арматуры, регулирующей давление и температурные параметры теплового носителя да входе отопительных контуров различных зданий и сооружений. В настоящее время их можно считать морально устаревшими, и они не столь популярны в силу приведенных ниже особенностей:
Рис. 4 Номера элеваторов
Рис. 5 Регулируемый узел и его особенности
Рис. 6 Узлы с автоматикой регулировки
Элеваторный узел системы отопления с регулировкой
Расширить возможности обычного элеватора и сделать его более гибким позволяет применение в нем регулирующих элементов. Основной принцип работы подобных устройств заключается в изменении сечения проходного канала сопла, для чего в него вводят иглу конусной формы. Механизм ввода может быть ручным или автоматическим при помощи электроприводного механизма.
Читайте также: Температурный график подачи теплоносителя в систему отопления — условия, показатели
В элеваторах, регулируемых механическим методом, иглу перемещает расположенный перпендикулярно относительно ее оси зубчатый шток. Ось поворачивают рукояткой, которая лежит на диске с делениями, фиксирующими положение рычага и определенные параметры настройки.
При автоматической регулировке электропривод располагается на одной оси с иглой, обеспечивая ее возвратное или поступательные движение. При этом сам элеватор состоит из двух фрагментов — непосредственно самого узла с форсункой, и предшествующей ему камеры, в которую поступают подающий (сверху) и обратный (снизу) потоки, а внутри передвигается игла, входящая через герметично закрытый торец по центральной оси.
Рис. 7 Схема монтажа и комплектация
Элеватор в системе отопления — схема монтажа
Элеваторы обычно устанавливают в индивидуальные тепловые пункты зданий по определенной типовой схеме подключения.
При размещении прибора в обычной системе отопления схема его обвязки помимо самого смесительного узла со вставным соплом включает в себя:
Запорную арматуру. Стандартный вариант — применение четырех клиновых задвижек: в общей линии подачи перед элеватором и в обратке теплосетей (отсекают сеть), а также после смесительного узла и в обратке до подсоединительного отвода (отсекают дом).
Грязевые фильтры. Обязательно присутствие одного прибора до элеваторного узла, иногда второй устанавливают в линию обратки.
Манометры. Схема подключения может содержать около четырех (обычно три) манометров, устанавливаемых до и после фильтра (позволяют отследить степень его загрязнения), а также в общую линию обратки теплосетей до и после задвижки.
Термометры. Располагаются аналогично манометрам, часто находятся рядом с ними.
Трехходовые шаровые краны. Схема подключения может содержать около 10 трехходовых кранов, служащих для технических целей — забора воды, заполнения системы, подключения через них манометров, спуска жидкости из грязевого фильтра.
Рис. 8 Примеры исполнения тепловых элеваторных узлов
Узлы тепловые элеваторные (УТЭ)
Как видно из представленной выше схемы, установка элеватора сопровождается монтажом широкого ряда дополнительной арматуры и контрольно-измерительных приборов.
Для облегчения этой процедуры производители отопительного оборудования выпускают готовые тепловые элеваторные узлы (УТЭ), включающие в себя всю необходимую арматуру и приборы.
Насчитывается 7 модификаций типовых тепловых элеваторных узлов от УТЭ 1 до УТЭ 7, которые монтируются на едином трубном каркасе. Их условные (внутренние, номинальные) диаметры проходных каналов при подключении к теплосетям для УТЭ1 – УТЭ4 — 50 мм, а на выходе прямой подачи и обратки — 80 мм. У моделей УТЭ 6,7 данные размерные параметры соответственно равны 80 и 100 мм.
Тепловые элеваторные узлы могут иметь различную комплектацию, основными элементами которой являются:
Рис. 9 Параметры и схема УТЭ
Хотя элеваторные узлы в силу отсутствия связанных с температурными и напорными характеристиками теплового носителя настройками являются морально устаревшими, их применение до сих пор рационально в коммунальных домах старой постройки. Принцип работы элеваторного узла системы отопления требует для его эффективной эксплуатации стабильного давления и температуры воды в теплосетях, а также неизменного объема проходящего через него жидкостного потока.