Люминесцентные лампы или иначе дневного света, нашли широкое применение как в бытовых условиях, так и производственных. Основным их преимуществом, по сравнению с лампами накаливания, является большая площадь освещения и энергоэффективность. Люминесцентные светильники выпускаются различных видов и мощностей.
Хоть устройство является несложным и надёжным, всё равно возникают такие ситуации, когда светильник перестаёт светить. Чтобы разобраться в чём дело и провести ремонт своими руками, необходимо знать принцип работы этого осветительного прибора, и из каких частей он состоит.
Принцип работы и характеристики
Светильник представляет собой выполненную из стекла колбу прямоугольной формы. С двух сторон, в её торцы, запаиваются по паре электродов. Колба заполняется смесью инертного газа и паров ртути. При подаче на её выводы напряжения возникает тлеющий разряд. Электрод нагревается под действием проходящего через него тока и происходит пробой газа. В результате чего появляется ультрафиолетовое излучение.
Такое излучение не воспринимается человеческим глазом, поэтому на внутренние стенки колбы наносится слой люминофора. Этот материал, поглощая ультрафиолет, излучает видимый свет. Указанное явление получило название люминесценции, отсюда и название лампы. В зависимости от состава люминофора изменяется и оттенок свечения.
Основные характеристики, по которым оцениваются лампы, следующие:
- потребляемая мощность;
- эффективность светоотдачи;
- срок службы;
- экологичность;
- задержка включения;
- мерцания.
Само по себе устройство, включённое в сеть переменного напряжения, работать не сможет. Это связано с тем, что в начальный момент времени оно имеет большое сопротивление. Для появления в нём разряда потребуется кратковременно подать высокое напряжение. После того как возникнет разряд, появится отрицательное дифференциальное сопротивление, т. е. значение тока резко увеличиться, а величина напряжения уменьшится. Такое состояние приведёт к короткому замыканию и выходу лампы из строя.
Для того чтоб этого не происходило, совместно с лампами используются устройства, получившие название балласты. По принципу работы они представляют собой дроссель, подключаемый последовательно с устройством освещения. Используется два основных типа включения:
- с неоновым стартером и электромагнитным дросселем (ЭмПРА);
- с электронным дросселем (ЭПРА).
В большинстве светильников, изготовленных для использования ламп этого типа, уже устанавливаются такого вида балласты.
Электромагнитный дроссель
Состоит из самого дросселя и стартера. Стартер, в этом случае, это неоновая лампочка с параллельно подключённым к ней конденсатором. Выводы неонки выполняются из биметалла. Используя явление самоиндукции, при подаче напряжения, балласт формирует импульс порядка одного киловольта, и за счёт своего сопротивления ограничивает ток, протекающий через лампу.
Такая конструкция характеризуется простотой и хорошей безотказностью.
Электрически схема работает следующим образом. Ток, поступающий из промышленной сети, попадает через дроссель на катод лампы и вывод стартера. Цепочка протекания тока выглядит так: сеть — дроссель — катод — стартер — катод — сеть. Перед тем как произойдёт электрический пробой вся мощность магнитного поля, находящаяся в дросселе, попадает на вывод катода.
Стартер в это время находится в состоянии разрыва цепи. В момент пробоя, из-за того, что сопротивление лампы меньше чем стартера, ток потечёт по цепи: сеть — дроссель — катод — катод — сеть. Дроссель начинает выполнять функцию токоограничителя. Конденсатор С1 является компенсирующим конденсатором и применяется для увеличения коэффициента мощности.
Такая схема обладает рядом недостатков:
- длительный запуск;
- дополнительное потребление электроэнергии дросселем;
- может издавать звуковой фон;
- мерцание лампы с частотой 100 Гц;
- увеличенный вес и габариты.
Электронный дроссель
Основа работы предполагает использование высокочастотного сигнала до 133 кГц, что позволяет исключить мигание лампы в видимом спектре излучения. Существует две возможности реализации запуска:
- Холодный. Позволяет осуществить включение без задержки. Такой способ запуска уменьшает время эксплуатации прибора.
- Горячий. Включение осуществляет с прогревом катодов, время запуска составляет около секунды.
Напряжение из питающей сети поступает на диодный мост, состоящий из выпрямительных диодов D1-D4. Через сглаживающий конденсатор попадает на инвертор. Инвертор состоит из четырёх полевых транзисторов, включённых по мостовой схеме и трансформатора Tr. Трансформатор используется тороидального типа. Напряжение колебательного контура, находясь в резонансе, осуществляет пробой газовой среды. После пробоя, сопротивление источника света резко падает. За ним снижается и напряжение, до параметров, позволяющих поддерживать горение.
Нередко встречаются комбинированные способы запуска. В этом случае используется не только подогрев электродов лампы, но и то, что электрическая цепь является колебательным контуром. Резонанс, возникающий в этом контуре, приводит к росту разности потенциалов между выводами источника света. Это приводит к увеличению тока и скорости подогрева электродов. Из-за чего устройство включается сразу. Для того чтоб увеличить срок службы катодов подключается электронный прибор, позистор. Благодаря ему уменьшается добротность контура и ток нагрева уменьшается.
Причины неисправности
Причинами поломки могут быть две причины, это неисправность самой лампы или повреждение блока запуска.
Повреждение колбы может быть вызвано как механическим путём, так и благодаря деградации. Дело в том, что катоды выполнены из вольфрама, покрытого специальным материалом. При эксплуатации происходит постепенное выгорание этого материала, что нарушает формирование стабильного разряда. Материал представляет собой щёлочноземельный металл. После его значительного выгорания, происходит скачкообразное изменение разности потенциалов и схема управления начинает работать неправильно. Именно из-за выгорания и осыпания металла, происходит потемнение концов лампы.
Неисправности балластов в основном заключаются в повреждении стартера. При этом происходит короткое замыкание. А также могут выходить из строя активные элементы электрической сети и сам дроссель. При неисправном дросселе возрастает ток, из-за межвиткового замыкания, приводящий к расплавлению катодных площадок. Нередко происходит и пробой конденсатора, вслед которому перегорают переходы полевых транзисторов.
Проверка элементов лампы
Если после включения светильника лампочка работает неправильно, необходимо выяснить причину такого поведения. Перед тем как приступить к ремонту требуется убедиться, что причина неисправности именно в светильнике.
Проверяем присутствие напряжение и работоспособность выключателя. Это легко сделать, имея пробник наличия напряжения в электрической сети. Когда точно станет известно, что проблема в источнике света, в первую очередь потребуется выяснить какие элементы нуждаются в ремонте. Это может быть как сама колба, так и пусковое устройство.
Вот перечень основных неисправностей и причин вызвавших их.
- Нет никакой реакции на включение. Требуется проверить лампу и дроссель, а также место крепления лампы в патроне.
- Лампа не загорается в середине. Неисправен стартер или высоковольтный конденсатор.
- Лампа не включается, слышен посторонний звук. Неисправность в дросселе.
- Нарушение в оттенке свечения источника. Изменения в люминесцентном слое колбы.
- При включении происходит мигание, эффект стробоскопа, запуска нет. Причиной может быть стартер или плохой контакт в патроне.
- Устройство светит тускло и в оранжевом спектре. Нарушение герметичности колбы, лампу необходимо как можно быстрей утилизировать.
- Края колбы чёрного цвета. Необходимо поменять лампу.
Проще всего можно осуществить проверку путём замены лампы и стартера на заведомо исправные. Проведение такой работы не должно составить труда. В случае если замены нет, придётся проверять исправность с помощью тестера. Если после замены лампа всё так же не работает, то поломка в дросселе.
Проверка дросселя
Первым сигналом, что неисправность в дросселе, будет периодическое моргание света лампы, или визуально можно будет наблюдать за распространением разряда в середине колбы. Для проверки нам понадобится любой мультиметр с функцией прозвонки или измерения сопротивления.
Переключив тестер в режим прозвонки, необходимо дотронутся щупами до выходов обмоток дросселя. Если на экране горит цифра один, или когда стрелочный прибор показывает бесконечность, то обмотка находится в обрыве. Сопротивление исправного дросселя составляет около 40 Ом. В случае отображения нулевого сопротивления или порядка нескольких Ом, делаем вывод, что произошло межвитковое замыкание.
Аналогично можно проверить на короткое замыкание стартер, конденсатор и другие электронные части схемы.
Необходимо отметить, что в случае замены дросселя своими руками необходимо обратить внимание на соответствие мощностей лампы и дросселя.
Проверка стартера
При этом используется ручное замыкание контактов через кнопку, т. е. имитация работы пускателя. Сначала замыкается кнопка S1, а далее включаем и через секунду отключаем линию кнопкой S2, т. е. имитируем работу стартера. В этом случае необходимо соблюдать осторожность, так как напряжение на кнопке будет превышать входное сетевое равное 220 в.
Проверка люминесцентной лампы
Саму лампу (колбу), можно проверить используя схему подключения без стартера или установкой её в исправный светильник.
В таком виде, схема позволяет использовать обычную лампочку накаливания в качестве ограничителя по току. Проверяемая лампа подключается последовательно с выпрямителем. Так как питание осуществляется с использованием постоянного тока, то это вызывает быстрый износ электродов. Хотя, в таком подключении яркость излучения будет заметно ниже, чем при нормальном включении, всё равно, возможно оценить состояние лампы. Мощность лампочки выбирается от 40 Вт, диоды и конденсаторы берутся с запасом по напряжению.
Используя тестер, можно убедиться в целостности контактной пары в самой колбе. Для этого необходимо замерить сопротивление между её выводами. В рабочем состоянии оно должно составлять порядка нескольких Ом.
Маркировка люминесцентных ламп
При замене люминесцентной лампы необходимо учитывать в первую очередь её параметры, они должны соответствовать используемому совместно с ним дросселю. Все источники света маркируются производителями, зная маркировку, несложно будет подобрать замену.
Параметры необходимые учитывать при выборе следующие:
- мощность;
- размер;
- тип цоколя;
- цветность света.
К сожалению, у производителей нет общего стандарта маркировки, чтоб получить представление о ней рассмотрим два примера.
Philips TL-D36/54—756 G13 T8, здесь:
- TL-D — обозначает тип лампы, в этом случае стандартная цветопередача.
- 36/54 — мощность источника, соответствует 36 Вт;
- 756 — цветовой код, где 7 цифра определяет степень цветопередачи, а число 56 цветовую температуру;
- G13 — тип цоколя, для используемого примера двухштырьковый.
- T8 — тип колбы.
Puritec HNS 18W T5 G5 Osram, здесь:
- HNS — тип лампы, бактерицидная.
- 18W — мощность прибора, 18 Вт;
- G5 — тип цоколя.
- T5 — тип колбы.
- Osram — торговая марка производителя.
При проведении ремонта, нужно соблюдать технику безопасности. Важно помнить, что нанести вред здоровью может не только опасное для жизни напряжение, но и пары ртути содержащиеся в колбе как короткой, так и длинной.